Indian Statistical Institute Mid-Semestral Examination Differential Topology: MMath II

Max Marks: 40

Time: 3 hours

- (1) Let $G = \{(x, |x|) : x \in \mathbb{R}\}$. Show that G is the image of a smooth function $f : \mathbb{R} \longrightarrow \mathbb{R}^2$. [5]
- (2) Let $X \subseteq \mathbb{R}^6$ be the subset defined by the equations

$$x_1^2 + x_2^2 + x_3^2 - x_4^2 = 1,$$

$$x_4^2 - x_5^2 - x_6^2 = -1.$$

Prove that X is a manifold. Find the dimension of X.

(3) Let $f, g: S^1 \longrightarrow \mathbb{R}^3$ be smooth maps. Given $\varepsilon > 0$, show that there exists $v \in \mathbb{R}^3$ with $||v|| < \varepsilon$ such that

$$\{f(x) : x \in S^1\} \cap \{g(x) + v : x \in S^1\} = \emptyset.$$
[5]

- (4) Define the notion of a Morse function on a manifold. Show that the critical points of a Morse function $f : \mathbb{R}^k \longrightarrow \mathbb{R}$ are isolated. Decide whether the function $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ defined by $f(x, y) = x^2 2xy + y^2$ is Morse. [8]
- (5) Show that O(n), the set of $n \times n$ orthogonal matrices, is a manifold. Describe $T_A(O(n))$ for $A \in O(n)$. [8]
- (6) Let X, Z be submanifolds of Y. Prove that if $X \pitchfork Z$, then for all $y \in (X \cap Z)$ we have $T_y(X \cap Z) = T_y(X) \cap T_y(Z).$

Is the converse true?

[8]

[6]